What are biosensors?
A successful biosensor must possess at least some of the following beneficial features:
1. The biocatalyst must be highly specific for the purpose of the analyses, be stable under normal storage conditions and, except in the case of colorimetric enzyme strips and dipsticks (see later), show good stability over a large number of assays (i.e. much greater than 100).
2. The reaction should be as independent of such physical parameters as stirring, pH and temperature as is manageable. This would allow the analysis of samples with minimal pre-treatment. If the reaction involves cofactors or coenzymes these should, preferably, also be co-immobilised with the enzyme.
3. The response should be accurate, precise, reproducible and linear over the useful analytical range, without dilution or concentration. It should also be free from electrical noise.
4. If the biosensor is to be used for invasive monitoring in clinical situations, the probe must be tiny and biocompatible, having no toxic or antigenic effects. If it is to be used in fermenters it should be sterilisable. This is preferably performed by autoclaving but no biosensor enzymes can presently withstand such drastic wet-heat treatment. In either case, the biosensor should not be prone to fouling or proteolysis.
5. The complete biosensor should be cheap, small, portable and capable of being used by semi-skilled operators.
6. There should be a market for the biosensor. There is clearly little purpose developing a biosensor if other factors (e.g. government subsidies, the continued employment of skilled analysts, or poor customer perception) encourage the use of traditional methods and discourage the decentralisation of laboratory testing.
The biological response of the biosensor is determined by the biocatalytic membrane which accomplishes the conversion of reactant to product. Immobilised enzymes possess a number of advantageous features which makes them particularly applicable for use in such systems. They may be re-used, which ensures that the same catalytic activity is present for a series of analyses. This is an important factor in securing reproducible results and avoids the pitfalls associated with the replicate pipetting of free enzyme otherwise necessary in analytical protocols. Many enzymes are intrinsically stabilised by the immobilisation process, but even where this does not occur there is usually considerable apparent stabilisation. It is normal to use an excess of the enzyme within the immobilised sensor system. This gives a catalytic redundancy (i.e. h <<>
When the reaction, occurring at the immobilised enzyme membrane of a biosensor, is limited by the rate of external diffusion, the reaction process will possess a number of valuable analytical assets. In particular, it will obey the relationship shown in equation. It follows that the biocatalyst gives a proportional change in reaction rate in response to the reactant (substrate) concentration over a substantial linear range, several times the intrinsic Km. This is very useful as analyte concentrations are often approximately equal to the Kms of their appropriate enzymes which is roughly 10 times more concentrated than can be normally determined, without dilution, by use of the free enzyme in solution. Also following from equation is the independence of the reaction rate with respect to pH, ionic strength, temperature and inhibitors. This simply avoids the tricky problems often encountered due to the variability of real analytical samples (e.g, fermentation broth, blood and urine) and external conditions. Control of biosensor response by the external diffusion of the analyte can be encouraged by the use of permeable membranes between the enzyme and the bulk solution. The thickness of these can be varied with associated effects on the proportionality constant between the substrate concentration and the rate of reaction (i.e. increasing membrane thickness increases the unstirred layer (d) which, in turn, decreases the proportionality constant, kL, in equation). Even if total dependence on the external diffusional rate is not achieved (or achievable), any increase in the dependence of the reaction rate on external or internal diffusion will cause a reduction in the dependence on the pH, ionic strength, temperature and inhibitor concentrations.
Schematic diagram showing the main components of a biosensor. The biocatalyst (a) converts the substrate to product. This reaction is determined by the transducer (b) which converts it to an electrical signal. The output from the transducer is amplified (c), processed (d) and displayed (e).
The key part of a biosensor is the transducer (shown as the 'black box' in Figure 6.1) which makes use of a physical change accompanying the reaction. This may be
1. the heat output (or absorbed) by the reaction (calorimetric biosensors),
2. changes in the distribution of charges causing an electrical potential to be produced (potentiometric biosensors),
3. movement of electrons produced in a redox reaction (amperometric biosensors),
4. light output during the reaction or a light absorbance difference between the reactants and products (optical biosensors), or
5. effects due to the mass of the reactants or products (piezo-electric biosensors).
There are three so-called 'generations' of biosensors; First generation biosensors where the normal product of the reaction diffuses to the transducer and causes the electrical response, second generation biosensors which involve specific 'mediators' between the reaction and the transducer in order to generate improved response, and third generation biosensors where the reaction itself causes the response and no product or mediator diffusion is directly involved.
The electrical signal from the transducer is often low and superimposed upon a relatively high and noisy (i.e. containing a high frequency signal component of an apparently random nature, due to electrical interference or generated within the electronic components of the transducer) baseline. The signal processing normally involves subtracting a 'reference' baseline signal, derived from a similar transducer without any biocatalytic membrane, from the sample signal, amplifying the resultant signal difference and electronically filtering (smoothing) out the unwanted signal noise. The relatively slow nature of the biosensor response considerably eases the problem of electrical noise filtration. The analogue signal produced at this stage may be output directly but is usually converted to a digital signal and passed to a microprocessor stage where the data is processed, converted to concentration units and output to a display device or data store.
8 comments:
I am the kind of hombre who loves to seek bran-new stuff. Right now I am building my hold photovoltaic panels. I am doing it all alone without the assistance of my staff. I'm using the internet as the only way to acheive this. I stumbled upon a really brilliant site which explains how to create pv panels and wind generators. The site explains all the steps required to solar panel construction.
I'm not really sure about how correct the data given there is. If some guys over here who have xp with these things can have a peak and give your feedback in the thread it would be grand and I'd extremely appreciate it, because I really would love to try [URL=http://solar-panel-construction.com]solar panel construction[/URL].
Tnx for reading this. U guys are the best.
[B]NZBsRus.com[/B]
Dont Bother With Laggin Downloads Using NZB Downloads You Can Easily Find Movies, Console Games, MP3 Singles, Applications and Download Them @ Fast Rates
[URL=http://www.nzbsrus.com][B]Usenet[/B][/URL]
You have to express more your opinion to attract more readers, because just a video or plain text without any personal approach is not that valuable. But it is just form my point of view
How you find ideas for articles, I am always lack of new ideas for articles. Some tips would be great
Infatuation casinos? scrutinize this inexperienced [url=http://www.realcazinoz.com]casino[/url] advisor and take placid up online casino games like slots, blackjack, roulette, baccarat and more at www.realcazinoz.com .
you can also look into our additional [url=http://freecasinogames2010.webs.com]casino[/url] meet head on at http://freecasinogames2010.webs.com and be the victor in palpable wary dough !
another corresponding unequivocally [url=http://www.ttittancasino.com]casino spiele[/url] in the quarter of is www.ttittancasino.com , because german gamblers, moving down drop off upon alongside unrestrained online casino bonus.
last few days our group held a similar talk about this topic and you show something we have not covered yet, thanks.
- Laura
top [url=http://www.001casino.com/]free casino games[/url] hinder the latest [url=http://www.casinolasvegass.com/]las vegas casino[/url] manumitted no set aside hand-out at the leading [url=http://www.baywatchcasino.com/]casino online
[/url].
Regardless, couples could still have the option of a non-Photovoltaic Isolator license.
Ethanol photovoltaic isolator volumes sold from our ethanol plants.
What we are seeing some basis inflation. And we're going to double our share to more than triple its photovoltaic isolator energy unit to external investors. 06 off of that because it is a very exciting venture we are involved in! Todd Becker Okay, thank you very much.
my weblog ... solar outside lights
Post a Comment